谷歌浏览器插件
订阅小程序
在清言上使用

Fracture Hydromechanical Response Measured by Fiber Optic Distributed Acoustic Sensing at Millihertz Frequencies

Geophysical research letters(2017)

引用 58|浏览11
暂无评分
摘要
A new method of measuring dynamic strain in boreholes was used to record fracture displacement in response to head oscillation. Fiber optic distributed acoustic sensing (DAS) was used to measure strain at mHz frequencies, rather than the Hz to kHz frequencies typical for seismic and acoustic monitoring. Fiber optic cable was mechanically coupled to the wall of a borehole drilled into fractured crystalline bedrock. Oscillating hydraulic signals were applied at a companion borehole 30 m away. The DAS instrument measured fracture displacement at frequencies of less than 1 mHz and amplitudes of less than 1 nm, in response to fluid pressure changes of less 20 Pa (2 mm H2O). Displacement was linearly related to the log of effective stress, a relationship typically explained by the effect of self‐affine fracture roughness on fracture closure. These results imply that fracture roughness affects closure even when displacement is a million times smaller than the fracture aperture.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要