Visible to NIR downconversion process in Tb3+-Yb3+ codoped silica-hafnia glass and glass-ceramic sol-gel waveguides for solar cells

Journal of Luminescence(2018)

引用 52|浏览45
暂无评分
摘要
The efficiency of photovoltaic solar cells is strongly related to the spectral absorption and photo-conversion properties of the cell's active material, which does not exploit the whole broadband solar spectrum. This mismatch between the spectrum of the solar light and the wavelength dependent cell's response can be partially overcome by using luminescent conversion layers in front or in the back of the solar cell. In this paper, the investigation of Tb3+-Yb3+ co-doped SiO2-HfO2 glass and glass-ceramic waveguides is presented. Due to a down-conversion process based on cooperative energy transfer between one Tb3+ ion and two Yb3+ ions, a blue photon at 488nm can be divided in two NIR photons at 980nm. Films with different molar concentrations of rare earths, up to a total amount of [Tb + Yb] = 15%, were prepared by a sol-gel route, using dip-coating deposition on SiO2 substrates. For all the films, the molar ratio [Yb]/[Tb] was taken equal to 4. The comparison of the energy-transfer efficiency between Tb3+ and Yb3+ ions in the glass and in the glass-ceramic materials demonstrated the higher performance of the glass-ceramic, with a maximum quantum transfer efficiency of 179% for the highest rare earth doping concentration. Moreover, experimental results and comparison with proper rate equations modelling showed a linear dependence of the photoluminescence emission intensity for the Yb3+ ions 2F5/2 → 2F7/2 transition at 980nm on the excitation power, indicating a direct transfer process from Tb3+ to Yb3+ ions. The reported waveguides could find applications not only as downconverting filters in transmission but also as efficient solar concentrators in the near-IR spectral region.
更多
查看译文
关键词
Rare earths,Glass,Glass-ceramics,Down-conversion,Energy transfer,Sol-gel films
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要