谷歌浏览器插件
订阅小程序
在清言上使用

The genetic basis of human brain structure and function: 1,262 genome-wide associations found from 3,144 GWAS of multimodal brain imaging phenotypes from 9,707 UK Biobank participants

bioRxiv(2018)

引用 9|浏览18
暂无评分
摘要
The genetic basis of brain structure and function is largely unknown. We carried out genome-wide association studies (GWAS) of 3,144 distinct functional and structural brain imaging derived phenotypes (IDPs), using imaging and genetic data from a total of 9,707 participants in UK Biobank. All subjects were imaged on a single scanner, with 6 distinct brain imaging modalities being acquired. We show that most of the IDPs are heritable and we identify patterns of co-heritability within and between IDP sub-classes. We report 1,262 SNP associations with IDPs, based on a discovery sample of 8,426 subjects. Notable significant and interpretable associations include: spatially specific changes in T2* in subcortical regions associated with several genes related to iron transport and storage; spatially extended changes in white matter micro-structure associated with genes coding for proteins of the extracellular matrix and the epidermal growth factor; variations in pontine crossing tract neural organization associated with genes that regulate axon guidance and fasciculation during development; and variations in brain connectivity associated with 14 genes that contribute broadly to brain development, patterning and plasticity. Our results provide new insight into the genetic architecture of the brain with relevance to complex neurological and psychiatric disorders, as well as brain development and aging.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要