Directed Biofabrication of Nanoparticles through Regulating Extracellular Electron Transfer

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2017)

引用 65|浏览29
暂无评分
摘要
Biofabrication of nanomaterials is currently constrained by a low production efficiency and poor controllability on product quality compared to chemical synthetic routes. In this work, we show an attractive new biosynthesis system to break these limitations. A directed production of selenium-containing nanoparticles in Shewanella oneidensis MR-1 cells, with fine-tuned composition and subcellular synthetic location, was achieved by modifying the extracellular electron transfer chain. By taking advantage of its untapped intracellular detoxification and synthetic power, we obtained high-purity, uniform sized cadmium selenide nanoparticles in the cytoplasm, with the production rates and fluorescent intensities far exceeding the state-of-the-art biosystems. These findings may fundamentally change our perception of nanomaterial biosynthesis process and lead to the development of fine controllable nanoparticles biosynthesis technologies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要