Tension and chemical efficiency of Myosin-II motors

arXiv: Biological Physics(2017)

引用 22|浏览1
暂无评分
摘要
Recent experiments demonstrate that molecular motors from the Myosin II family serve as cross-links inducing active tension in the cytoskeletal network. Here we revise the Brownian ratchet model, previously studied in the context of active transport along polymer tracks, in setups resembling a motor in a polymer network, also taking into account the effect of electrostatic changes in the motor heads. We explore important mechanical quantities and show that such a model is also capable of mechanosensing. Finally, we introduce a novel efficiency based on excess heat production by the chemical cycle which is directly related to the active tension the motor exerts. The chemical efficiencies differ considerably for motors with a different number of heads, while their mechanical properties remain qualitatively similar. For motors with a small number of heads, the chemical efficiency is maximal when they are frustrated, a trait that is not found in larger motors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要