Dynamic Structural and Contact Modeling for a Silicon Hexapod Microrobot

JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME(2017)

引用 13|浏览14
暂无评分
摘要
This paper examines the dynamics of a type of silicon-based millimeter-scale hexapod, focusing on interaction between structural dynamics and ground contact forces. These microrobots, having a 5 mm x 2 mm footprint, are formed from silicon with integrated thin-film lead-zirconate-titanate (PZT) and high-aspect-ratio parylene-C polymer microactuation elements. The in-chip dynamics of the microrobots are measured when actuated with tethered electrical signal to characterize the resonant behavior of different parts of the robot and its piezoelectric actuation. Out-of-chip robot motion is then stimulated by external vibration after the robot has been detached from its silicon tethers, which removes access to external power but permits sustained translation over a surface. A dynamic model for robot and ground interaction is presented to explain robot locomotion in the vibrating field using the in-chip measurements of actuator dynamics and additional dynamic properties obtained from finite element analysis (FEA) and other design information. The model accounts for the microscale interaction between the robot and ground, for multiple resonances of the robot leg, and for rigid robot body motion of the robot chassis in five degrees-of-freedom. For each mode, the motions in vertical and lateral direction are coupled. Simulation of this dynamic model with the first three resonant modes (one predominantly lateral and two predominantly vertical) of each leg shows a good match with experimental results for the motion of the robot on a vibrating surface, and allows exploration of influence of small-scale forces such as adhesion on robot locomotion. Further predictions for future autonomous microrobot performance based on the dynamic phenomena observed are discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要