3D Shape Reconstruction by Modeling 2.5D Sketch

neural information processing systems(2017)

引用 23|浏览77
暂无评分
摘要
3D object reconstruction from a single image is a highly under-determined problem, requiring strong prior knowledge of plausible 3D shapes. This introduces challenge for learning-based approaches, as 3D object annotations in real images are scarce. Previous work chose to train on synthetic data with ground truth 3D information, but suffered from the domain adaptation issue when tested on real data. In this work, we propose an end-to-end trainable framework, sequentially estimating 2.5D sketch and 3D object shape. Our disentangled, two-step formulation has three advantages. First, compared to full 3D shape, 2.5D sketch is much easier to be recovered from 2D image, and to transfer from synthetic to real images. Second, for 3D reconstruction from 2.5D sketch, we can easily transfer the learned model on synthetic data to real images, as rendered 2.5D sketches are invariant to object appearance variations in real images, including lighting, texture, etc. This further relieves the domain adaptation problem. Third, we derive differentiable projective functions from 3D shapes to 2.5D sketch, making the framework end-to-end trainable on real images, requiring no real-image annotations. Our framework achieves state-of-the-art performance on 3D shape reconstruction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要