The effects of subduction termination on the continental lithosphere: Linking volcanism, deformation, surface uplift, and slab tearing in central Anatolia

GEOSPHERE(2017)

引用 45|浏览6
暂无评分
摘要
Subduction beneath central Anatolia represents the transition between continuous subduction along the Aegean trench in the west and slab break-off and/or subduction termination at the Arabian-Eurasian collision zone in the east. Using recently collected seismic data from the Continental Dynamics-Central Anatolian Tectonics project alongside a newly developed approach to the creation of a 3D shear-velocity model from the joint inversion of receiver functions and surface-wave dispersion data, we can gain important insights into the character of the downgoing, segmenting African lithosphere and its relationship with the overriding Central Anatolian plate. These results reveal that the mantle lithosphere of central Anatolia is thin and variable (<50-80 km) due to the decoupling of the crust of accreted lithospheric blocks from their associated lithospheric mantle, which continued to subduct and was subsequently removed by slab delamination during early-mid Miocene times. The resulting lithospheric thickness variations appear to control deformation as well as the distribution of vol-canism throughout the region. In the Central Anatolian Volcanic Province, the upper-most mantle is characterized by very slow shear velocities (<4.2 km/s) consistent with the presence of melt in the uppermost mantle. The fastest shear velocities observed in this study (>4.5 km/s) underlie the Central Taurus Mountains, which have experienced similar to 2 km of uplift in the past similar to 8 m.y. These velocities are consistent with lithospheric mantle, and we interpret that the recent uplift of these mountains is due to a rebound of the subducting slab after slab break-off and/or fragmentation rather than asthenospheric influx.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要