Complementary views on electron spectra: From fluctuation diagnostics to real-space correlations

Physical Review B(2018)

引用 7|浏览18
暂无评分
摘要
We study the relation between the microscopic properties of a many-body system and the electron spectra, experimentally accessible by photoemission. In a recent paper [Phys. Rev. Lett. 114, 236402 (2015)], we introduced the approach, to extract the dominant wave vector dependent bosonic fluctuations from the electronic self-energy. Here, we first reformulate the theory in terms of fermionic modes, to render its connection with resonance valence bond (RVB) fluctuations more transparent. Secondly, by using a large-U expansion, where U is the Coulomb interaction, we relate the fluctuations to real space correlations. Therefore, it becomes possible to study how electron spectra are related to charge, spin, superconductivity and RVB-like real space correlations, broadening the analysis of an earlier work [Phys. Rev. B 89, 245130 (2014)]. This formalism is applied to the pseudogap physics of the two-dimensional Hubbard model, studied in the dynamical cluster approximation. We perform calculations for embedded clusters with up to 32 sites, having three inequivalent K-points at the Fermi surface. We find that as U is increased, correlation functions gradually attain values consistent with an RVB state. This first happens for correlation functions involving the antinodal point and gradually spreads to the nodal point along the Fermi surface. Simultaneously a pseudogap opens up along the Fermi surface. We relate this to a crossover from a Kondo-like state to an RVB-like localized cluster state and to the presence of RVB and spin fluctuations. These changes are caused by a strong momentum dependence in the cluster bath-couplings along the Fermi surface. We also show, from a more algorithmic perspective, how the time-consuming calculations in fluctuation diagnostics can be drastically simplified.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要