Test for the Existence of Finite Moments Via Bootstrap
Journal of nonparametric statistics(2018)SCI 4区
Abstract
This paper develops a bootstrap hypothesis test for the existence of finite moments of a random variable, which is nonparametric and applicable to both independent and dependent data. The test is based on a property in bootstrap asymptotic theory, in which the m out of n bootstrap sample mean is asymptotically normal when the variance of the observations is finite. Consistency of the test is established. Monte Carlo simulations are conducted to illustrate the finite sample performance and compare it with alternative methods available in the literature. Applications to financial data are performed for illustration.
MoreTranslated text
Key words
Central limit theorem,heavy tail,Hill estimator,Kolmogorov-Smirnov test,m out of n bootstrap
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Some Measures of Kurtosis and Their Inference on Large Datasets
AStA Advances in Statistical Analysis 2022
被引用2
On Some Distributional Properties of Subordinated Gaussian Random Fields
Methodology And Computing In Applied Probability 2022
被引用2
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest