谷歌浏览器插件
订阅小程序
在清言上使用

Genetic Evidence for Canal-Mediated Dispersal of Mapleleaf,Quadrula Quadrula(bivalvia:Unionidae) on the Niagara Peninsula, Canada

Freshwater science(2018)

引用 10|浏览2
暂无评分
摘要
Alterations to watercourses affect connectivity in aquatic systems and can influence dispersal of aquatic biota. Dams fragment populations and act as isolating barriers, but canals create connections between waterbodies that can be used as corridors for dispersal by opportunistic invaders. The Niagara Peninsula of Ontario, Canada, has a 200-y history of canal operation, resulting in major modification of the watercourses in the region. This modification allowed numerous invasive species to enter the upper Great Lakes (e. g., sea lamprey) and probably has facilitated dispersal in native species. The purpose of our study was to explore the effects of canal and dam construction on the genetic structure of Mapleleaf (Quadrula quadrula), a widespread and relatively common species in the central Great Lakes that has been found only recently in several western Lake Ontario harbors. Establishment of Q. quadrula in Lake Ontario may have been a recent event, facilitated by the Niagara Peninsula's history of canal operation. We used analyses of microsatellite DNA genotypes to examine the effect of canals on the genetic structure of mussel populations. Structure analysis revealed a pattern of gene flow between lakes that cannot be explained by watercourse connections prior to the creation of the Welland Canal. Evidence suggestive of historical bottlenecks at some Lake Ontario sites may indicate that these populations became established after canal creation. After considering genetic structure, hydrogeography and isolation-by-distance (IBD) analysis, the first iteration of the canal (1829-1833) is most supported as the configuration that facilitated colonization. However, weak IBD signals across canal models may signify continued gene flow across configurations. Our study demonstrates the connective effect of canals on freshwater mussel populations and has the potential to improve conservation strategies for this and other unionid species at risk.
更多
查看译文
关键词
canals,population genetic structure,gene flow,microsatellites,Laurentian Great Lakes,Welland Canal,Niagara Falls
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要