Inferred Rheological Structure And Mantle Conditions From Postseismic Deformation Following The 2010 M-W 7.2 El Mayor-Cucapah Earthquake

GEOPHYSICAL JOURNAL INTERNATIONAL(2018)

引用 8|浏览25
暂无评分
摘要
The 2010 M(w)7.2ElMayor-Cucapah earthquake provides a unique target of postseismic study as deformation extends across several distinct geological provinces, including the cold Mesozoic arc crust of the Peninsular Ranges and newly formed, hot, extending lithosphere within the Salton Trough. We use five years of global positioning system measurements to invert for afterslip and constrain a 3-D finite-element model that simulates viscoelastic relaxation. We find that afterslip cannot readily explain far-field displacements (more than 50 km from the epicentre). These displacements are best explained by viscoelastic relaxation of a horizontally and vertically heterogeneous lower crust and upper mantle. Lower viscosities beneath the Salton Trough compared to the Peninsular Ranges and other surrounding regions are consistent with inferred differences in the respective geotherms. Our inferred viscosity structure suggests that the depth of the Lithosphere/Asthenosphere Boundary (LAB) is similar to 65 km below the Peninsular Ranges and similar to 32 km beneath the Salton Trough. These depths are shallower than the corresponding seismic LAB. This suggests that the onset of partial melting in peridotite may control the depth to the base of the mechanical lithosphere. In contrast, the seismic LAB may correspond to an increase in the partial melt percentage associated with the change from a conductive to an adiabatic geotherm.
更多
查看译文
关键词
Creep and deformation, Transient deformation, Rheology: crust and lithosphere
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要