Effects of applying lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of forage-based total mixed ration silage in Tibet

ANIMAL PRODUCTION SCIENCE(2019)

引用 16|浏览8
暂无评分
摘要
Total mixed ration (TMR) silage technology has been practically used to feed ruminants in Tibet. This study was conducted on forage-based TMR to evaluate the effects of supplementing lactic acid bacteria and propionic acid on its fermentation characteristics, aerobic stability and in vitro gas production kinetics and digestibility. Experimental treatments included four variants: (1) TMR supplemented with 10 mL deionised water per kilogram fresh matter (Control); (2) TMR supplemented with 1 x 10(6) cfu/g Lactobacillus plantarum (L); (3) TMR supplemented with 0.3% propionic acid (P); (4) TMR supplemented with a combination of 1 x 10(6) cfu/g Lactobacillus plantarum and 0.3% propionic acid (LP). The latter three additives were first dissolved in deionised water and then applied as a water solution (10 mL/kg fresh matter). All treatments were ensiled in laboratory-scale silos for 45 days, and then exposed to air for 12 days to evaluate the aerobic stability of TMR silage. Further, the four experimental treatments were fermented with buffered rumen fluid to measure in vitro gas production and nutrients' digestibility. The results indicated that all TMR silages possessed good fermentation characteristics with low pH values (<4.18) and ammonia nitrogen (NH3-N) contents (<100 g/kg total nitrogen), and high lactic acid contents (>66 g/kg DM) and Flieg points (>80). The addition of L and LP stimulated a more efficient homofermentation of TMR silage than in the variant without L, as evidenced by higher ratios of lactic:acetic acid. The addition of P had no effect (P > 0.05) on lactic acid production of TMR silage compared with the Control, whereas it decreased NH3-N content (P < 0.05). Under aerobic conditions, L silage showed less aerobic stability compared with the Control silage, whereas P and LP silages were more (P < 0.05) aerobically stable. Compared with the Control, all additives elevated (P < 0.05) the total gas production and in vitro dry matter digestibility of TMR silages. L silage had a higher (P < 0.05) in vitro neutral detergent fibre digestibility than the Control silage. Data obtained from this study suggested that TMR silage based on oat and common vetch can be well conserved with or without additives. Lactic acid bacteria were compatible with propionic acid, and addition of lactic acid bacteria together with propionic acid can improve the fermentation quality, aerobic stability and in vitro dry matter digestibility of TMR silage.
更多
查看译文
关键词
additives,aerobic stability,fermentation characteristics,forage,in vitro gas production kinetics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要