Effects of Ti and Ta addition on microstructure stability and tensile properties of reduced activation ferritic/martensitic steel for nuclear fusion reactors

Journal of Nuclear Materials(2018)

引用 48|浏览17
暂无评分
摘要
The effects of Ti and Ta addition on microstructure stability and tensile properties of a reduced activation ferritic/martensitic (RAFM) steel have been investigated. Ti addition of 0.06 wt% to conventional RAFM reference base steel (Fe-9.3Cr-0.93W-0.22V-0.094Ta-0.1C) was intended to promote the precipitation of nano-sized (Ti,W) carbides with a high resistance to coarsening. In addition, the Ti addition was substituted for 0.094 wt% Ta. The Ti-added RAFM steel (Ti-RAFM) exhibited a higher yield strength (ΔYS = 32 MPa) at 600 °C than the reference base steel due to additional precipitation hardening by (Ti,W)-rich MX with an average size of 6.1 nm and the area fraction of 2.39%. However, after thermal exposure at 600 °C for 1000 h, this Ti-RAFM was more susceptible to degradation than the reference base steel; the block width increased by 77.6% in Ti-RAFM after thermal exposure while the reference base steel showed only 9.1% increase. In order to suppress diffusion rate during thermal exposure, the large-sized Ta element with low activation was added to Ti-RAFM. The Ta-added Ti-RAFM steel exhibited good properties with outstanding microstructure stability. Quantitative comparison in microstructures was discussed with a consideration of Ti and Ta addition.
更多
查看译文
关键词
Reduced activation ferritic/martensitic steels,Thermal aging,Microstructure,Precipitation,Tensile properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要