Low frequency acoustic stop bands in cubic arrays of thick spherical shells with holes

arXiv: Classical Physics(2017)

引用 25|浏览7
暂无评分
摘要
We analyse the propagation of pressure waves within a fluid filled with a three-dimensional array of rigid coated spheres (shells). We first draw band diagrams for corresponding Floquet-Bloch waves. We then dig a channel terminated by a cavity within each rigid shell and observe the appearance of a low frequency stop band. The underlying mechanism is that each holey shell now acts as a Helmholtz resonator supporting a low frequency localized mode: Upon resonance, pressure waves propagate with fast oscillations in the thin water channel drilled in each shell and are localized in each fluid filled inner cavity. The array of fluid filled shells is approximated by a simple mechanical model of springs and masses allowing for asymptotic estimates of the low frequency stop band. We finally propose a realistic design of periodic macrocell with a large defect surrounded by 26 resonators connected by thin straight rigid wires, which supports a localized mode in the low frequency stop band.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要