On the bulk motion of the cerebrospinal fluid in the spinal canal

JOURNAL OF FLUID MECHANICS(2018)

引用 36|浏览39
暂无评分
摘要
Radionuclide scanning images published in Nature by Di Chiro in 1964 showed a downward migration along the spinal canal of particle tracers injected in the brain ventricles while also showing an upward flow of tracers injected in the lumbar region of the canal. These observations, since then corroborated by many radiological measurements, have been the basis for the hypothesis that there must be an active circulation mechanism associated with the transport of cerebrospinal fluid (CSF) deep down into the spinal canal and subsequently returning a portion back to the cranial vault. However, to date, there has been no physical explanation for the mechanism responsible for the establishment of such a bulk recirculating motion. To investigate the origin and characteristics of this recirculating flow, we have analyzed the motion of the CSF in the subarachnoid space of the spinal canal. Our analysis accounts for the slender geometry of the spinal canal, the small compliance of the dura membrane enclosing the CSF in the canal, and the fact that the CSF is confined to a thin annular subarachnoid space surrounding the spinal cord. We apply this general formulation to study the characteristics of the flow generated in a simplified model of the spinal canal consisting of a slender compliant cylindrical pipe with a coaxial cylindrical inclusion, closed at its distal end, and subjected to small periodic pressure pulsations at its open entrance. We show that the balance between the local acceleration and viscous forces produces a leading-order flow consisting of pure oscillatory motion with axial velocities on the order of a few centimetres per second and amplitudes monotonically decreasing along the length of the canal. We then demonstrate that the nonlinear term associated with the convective acceleration contributes to a second-order correction consisting of a steady streaming that generates a bulk recirculating motion of the CSF along the length of the canal with characteristic velocities two orders of magnitude smaller than the leading-order oscillatory flow. The results of the analysis of this idealized geometry of the spinal canal are shown to be in good agreement not only with experimental measurements in an in-vitro model but also with radiological measurements conducted in human adults.
更多
查看译文
关键词
biological fluid dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要