Nano-crystalline graphite for reliability improvement in MEM relay contacts

Carbon(2018)

引用 27|浏览28
暂无评分
摘要
Micro- and Nano-electromechanical (MEM/NEM) relays can operate with zero-leakage at far higher temperatures and levels of radiation than transistors, but have poor reliability. This work demonstrates improvement in reliability of MEM relays using nano-crystalline graphite (NCG)-coated contact surfaces. The high stability of NCG in ambient air, along with its low surface energy, appears to make it an ideal contact material. NCG-coated relays achieved over 2.8 million fast, hot-switching cycles with a drain current of at least 5 μA and on-resistance under 17 kΩ, in ambient air. The relays also were tested in slow, hot-switching cycles designed to increase the electrical stress on the contact, and consistently achieved on-currents up to 50 μA or the imposed current limit without failure. The eventual cause of failure appeared to be mechanical stress on the NCG layer over repeated cycling causing degradation. Increasing the layer thickness is expected to further improve the contact reliability. The relays are scalable and can be used as micro- or nano-scale switches in electronic components designed for very high temperatures and levels of radiation.
更多
查看译文
关键词
mem relay contacts,graphite,nano-crystalline
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要