Anisotropic magnetocaloric response in AlFe2B2

Journal of Alloys and Compounds(2018)

引用 52|浏览33
暂无评分
摘要
Experimental investigations of the magnetocaloric response of the intermetallic layered AlFe2B2 compound along the principle axes of the orthorhombic cell were carried out using aligned plate-like crystallites with an anisotropic [101] growth habit. Results were confirmed to be consistent with density functional theory calculations. Field-dependent magnetization data confirm that the a-axis is the easy direction of magnetization within the (ac) plane. The magnetocrystalline anisotropy energy required to rotate the spin quantization vector from the c-to the a-axis direction is determined as K∼0.9 MJ/m3 at 50 K. Magnetic entropy change curves measured near the Curie transition temperature of 285 K reveal a large rotating magnetic entropy change of 1.3 J kg−1K−1 at μ0Happ = 2 T, consistent with large differences in magnetic entropy change ΔSmag measured along the a- and c-axes. Overall, this study provides insight of both fundamental and applied relevance concerning pathways for maximizing the magnetocaloric potential of AlFe2B2 for thermal management applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要