Shock-driven discrete vortex evolution on a high-Atwood number oblique interface

PHYSICS OF PLASMAS(2018)

引用 16|浏览98
暂无评分
摘要
We derive a model describing vorticity deposition on a high-Atwood number interface with a sinusoidal perturbation by an oblique shock propagating from a heavy into a light material. Limiting cases of the model result in vorticity distributions that lead to Richtmyer-Meshkov and Kelvin-Helmholtz instability growth. For certain combinations of perturbation amplitude, wavelength, and tilt of the shock, a regime is found in which discrete, co-aligned, vortices are deposited on the interface. The subsequent interface evolution is described by a discrete vortex model, which is found to agree well with both RAGE simulations and experiments at early times. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要