谷歌浏览器插件
订阅小程序
在清言上使用

The Formation of Astrophysical Mg-rich Silicate Dust

Molecular astrophysics(2018)

引用 13|浏览10
暂无评分
摘要
We present new results for ground-state candidate energies of Mg-rich olivine (MRO) clusters and use the binding energies of these clusters to determine their nucleation rates in stellar outflows, with particular interest in the environments of core-collapse supernovae (CCSNe). Low-lying structures of clusters (Mg2SiO4)(n) 2 <= n <= 13 are determined from a modified minima hopping algorithm using an empirical silicate potential in the Buckingham form. These configurations are further refined and optimized using the density functional theory code Quantum Espresso. Utilizing atomistic nucleation theory, we determine the critical size and nucleation rates of these clusters. We find that configurations and binding energies in this regime are very dissimilar from those of the bulk lattice. Clusters grow with SiO4-MgO layering and exhibit only global, rather than local, symmetries. When compared to classical nucleation theory we find suppressed nucleation rates at most temperatures and pressures, with enhanced nucleation rates at very large pressures. This implies a slower progression of silicate dust formation in stellar environments than previously assumed.
更多
查看译文
关键词
Crystal Structure Prediction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要