谷歌浏览器插件
订阅小程序
在清言上使用

Growth and physical investigations of sprayed ZnMoO4 thin films along with wettability tests

Physica B: Condensed Matter(2018)

引用 6|浏览6
暂无评分
摘要
Ternary oxides based on zinc and molybdenum elements have known as semiconductor oxides with large band gap energies. With the focus mainly on their synthesis by cost-effective process as thin films, the aspect of their stability and reactivity as transparent layers against both UV radiation and oxidation under wet medium due to their oxygen deficiency has so far not been investigated. This work covers the synthesis as well as the structural, electrical and the wettability properties of ZnMoO4 thin films which have been prepared by the spray pyrolysis method on glass substrates at 460 °C. First, X-ray diffraction analysis shows that this oxide crystallizes in triclinic structure with the space group P-1. The thickness value of ZnMoO4 thin film of about 1.5 μm was estimated by spectroscopic ellipsometry (SE). Moreover, a special emphasis has been focused on the photoluminescence properties of such films to reach possible presence of defaults and oxygen vacancy. Second, the electrical conductivity, conduction mechanism, relaxation model of these films were indeed studied using impedance spectroscopy technique in the frequency range 10−1–106 Hz at various temperatures (25–300 °C). At high temperature, σAC conductivity obeys to the power law established by Jonscher. Besides, the variation of σDC with the inverse of the temperature follows Arrhenius law. This evolution suggests that the conduction process is thermally activated and the activation energy of this process is equal to 0.97 eV. Finally, the wettability tests reveal that zinc molybdates loses its hydrophobic character during aging under UV radiation to become completely hydrophilic. All these physical investigations demonstrated that such ternary oxide contains oxygen deficiency which may be of interest for photocatalytic purposes and pave the way for various sensitivity applications like gas and bio-sensors.
更多
查看译文
关键词
ZnMoO4,XRD analysis,Spectroscopic ellipsometry,PL measurements,Electrical conductivity,Wettability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要