谷歌浏览器插件
订阅小程序
在清言上使用

Loss of SDHB Reprograms Energy Metabolisms and Inhibits High Fat Diet Induced Metabolic Syndromes

crossref(2018)

引用 4|浏览50
暂无评分
摘要
Mitochondrial respiratory complex II utilizes succinate, key substrate of the Krebs cycle, for oxidative phosphorylation, which is essential for glucose metabolism. Mutations of complex II cause cancers and mitochondrial diseases, raising a critical question of the (patho-)physiological functions. To address the fundamental role of complex II in systemic energy metabolism, we specifically knockout SDHB in mice liver, a key complex II subunit that tethers the catalytic SDHA subunit and transfers the electrons to ubiquinone, and found that SHDB deficiency abolishes the assembly of complex II without affecting other respiration complexes while largely retaining SDHA stability. SHDB ablation reprograms energy metabolism and hyperactivates the glycolysis, Krebs cycle and β-oxidation pathways, leading to catastrophic energy deficit and early death. Strikingly, sucrose supplementation or high fat diet resumes both glucose and lipid metabolism and prevent early death. Also, SDHB deficient mice are completely resistant to high fat diet induced obesity. Our findings reveal that the unanticipated role of complex II orchestrating both lipid and glucose metabolisms, and suggest that SDHB is an ideal therapeutic target for combating obesity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要