Structural survey of HIV-1-neutralizing antibodies targeting Env trimer delineates epitope categories and suggests vaccine templates

bioRxiv(2018)

引用 2|浏览67
暂无评分
摘要
HIV-1 broadly neutralizing antibodies are desired for their therapeutic potential and as templates for vaccine design. Such antibodies target the HIV-1-envelope (Env) trimer, which is shielded from immune recognition by extraordinary glycosylation and sequence variability. Recognition by broadly neutralizing antibodies thus provides insight into how antibody can bypass these immune-evasion mechanisms. Remarkably, antibodies neutralizing u003e25% of HIV-1 strains have now been identified that recognize all major exposed surfaces of the prefusion-closed Env trimer. Here we analyzed all 206 broadly neutralizing antibody-HIV-1 Env complexes in the PDB with resolution suitable to define their interaction chemistries. These segregated into 20 antibody classes based on ontogeny and recognition, and into 6 epitope categories (V1V2, glycan-V3, CD4-binding site, silent face center, fusion peptide, and subunit interface) based on recognized Env residues. We measured antibody neutralization on a 208-isolate panel and analyzed features of paratope and B cell ontogeny. The number of protruding loops, CDR H3 length, and level of somatic hypermutation for broadly HIV-1 neutralizing antibodies were significantly higher than for a comparison set of non-HIV-1 antibodies. For epitope, the number of independent sequence segments was higher (P
更多
查看译文
关键词
antibody recognition,B cell ontogeny,broadly neutralizing antibody,cryo-electron microscopy,envelope glycoprotein trimer,glycan shielding,sequence variation,vaccine design,x-ray crystallography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要