A Recurrent Neural Network Approach for Automated Neural Tracing in Multispectral 3D Images

bioRxiv(2018)

引用 0|浏览49
暂无评分
摘要
Neuronal morphology reconstruction in fluorescence microscopy 3D images is essential for analyzing neuronal cell type and connectivity. Manual tracing of neurons in these images is time consuming and subjective. Automated tracing is highly desired yet is one of the foremost challenges in computational neuroscience. The multispectral labeling technique, Brainbow utilizes high dimensional spectral information to distinguish intermingled neuronal processes. It is particular interesting to develop new algorithms to include the spectral information into the tracing process. Recently, deep learning approaches achieved state-of-the-art in different computer vision and medical imaging applications. To benefit from the power of deep learning, in this paper, we propose an automated neural tracing approach in multispectral 3D Brainbow images based on recurrent neural net-work. We first adopt VBM4D approach to denoise multispectral 3D images. Then we generate cubes as training samples along the ground truth, manually traced paths. These cubes are the input to the recur-rent neural network. The proposed approach is simple and effective. The approach can be implemented with the deep learning toolbox Keras in 100 lines. Finally, to evaluate our approach, we computed the average and standard deviation of DIADEM metric from the ground truth results to our tracing results, and from our tracing results to the ground truth results. Extensive experimental results on the collected dataset demonstrate that the proposed approach performs well in Brainbow labeled mouse brain images.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要