How many qubits are needed for quantum computational supremacy?

QUANTUM(2018)

引用 89|浏览18
暂无评分
摘要
Quantum computational supremacy arguments, which describe a way for a quantum computer to perform a task that cannot also be done by a classical computer, typically require some sort of computational assumption related to the limitations of classical computation. One common assumption is that the polynomial hierarchy (PH) does not collapse, a stronger version of the statement that P ≠ NP, which leads to the conclusion that any classical simulation of certain families of quantum circuits requires time scaling worse than any polynomial in the size of the circuits. However, the asymptotic nature of this conclusion prevents us from calculating exactly how many qubits these quantum circuits must have for their classical simulation to be intractable on modern classical supercomputers. We refine these quantum computational supremacy arguments and perform such a calculation by imposing fine-grained versions of the non-collapse assumption. Each version is parameterized by a constant a and asserts that certain specific computational problems with input size n require 2^an time steps to be solved by a non-deterministic algorithm. Then, we choose a specific value of a for each version that we argue makes the assumption plausible, and based on these conjectures we conclude that Instantaneous Quantum Polynomial-Time (IQP) circuits with 208 qubits, Quantum Approximate Optimization Algorithm (QAOA) circuits with 420 qubits and boson sampling circuits (i.e. linear optical networks) with 98 photons are large enough for the task of producing samples from their output distributions up to constant multiplicative error to be intractable on current technology. In the first two cases, we extend this to constant additive error by introducing an average-case fine-grained conjecture.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要