Experimental insights into Stannern-trend eucrite petrogenesis

METEORITICS & PLANETARY SCIENCE(2018)

引用 5|浏览30
暂无评分
摘要
The incompatible trace element-enriched Stannern-trend eucrites have long been recognized as requiring a distinct petrogenesis from the Main Group-Nuevo Laredo (MGNL) eucrites. Barrat etal. () proposed that Stannern-trend eucrites formed via assimilation of crustal partial melts by a MGNL-trend magma. Previous experimental studies of low-degree partial melting of eucrites did not produce sufficiently large melt pools for both major and trace element analyses. Low-degree partial melts produced near the solidus are potentially the best analog to the assimilated crustal melts. We partially melted the unbrecciated, unequilibrated MGNL-trend eucrite NWA 8562 in a 1atm gas-mixing furnace, at IW-0.5, and at temperatures between 1050 and 1200 degrees C. We found that low-degree partial melts formed at 1050 degrees C are incompatible trace element enriched, although the experimental melts did not reach equilibrium at all temperatures. Using our experimental melt compositions and binary mixing modeling, the FeO/MgO trend of the resultant magmas coincides with the range of known Stannern-trend eucrites when a primary magma is contaminated by crustal partial melts. When experimental major element compositions for eucritic crustal partial melts are combined with trace element concentrations determined by previous modeling (Barrat etal. ), the Stannern-trend can be replicated with respect to both major, minor, and trace element concentrations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要