Neural-Network-Enhanced Evolutionary Algorithm Applied To Supported Metal Nanoparticles

PHYSICAL REVIEW B(2018)

引用 87|浏览15
暂无评分
摘要
We show that approximate structural relaxation with a neural network enables orders of magnitude faster global optimization with an evolutionary algorithm in a density functional theory framework. The increased speed facilitates reliable identification of global minimum energy structures, as exemplified by our finding of a hollow Pt-13 nanoparticle on an MgO support. We highlight the importance of knowing the correct structure when studying the catalytic reactivity of the different particle shapes. The computational speedup further enables screening of hundreds of different pathways in the search for optimum kinetic transitions between low-energy conformers and hence pushes the limits of the insight into thermal ensembles that can be obtained from theory.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要