SEMI-FLEXIBLE COMPACT POLYMERS IN A DISORDERED ENVIRONMENT

Contemporary materials(2017)

引用 0|浏览3
暂无评分
摘要
Hamiltonian cycles with bending rigidity are studied on the first three members of the fractal family obtained by generalization of the modified rectangular (MR) fractal lattice. This model is proposed to describe conformational and thermodynamic properties of a single semi-flexible ring polymer confined in a poor and disordered (e.g. crowded) solvent. Due to the competition between temperature and polymer stiffness, there is a possibility for the phase transition between molten globule and crystal phase of a polymer to occur. The partition function of the model in the thermodynamic limit is obtained and analyzed as a function of polymer stiffness parameter s (Boltzmann weight), which for semi-flexible polymers can take on values over the interval (0,1). Other quantities, such as persistence length, specific heat and entropy, are obtained numerically and presented graphically as functions of stiffness parameter s .
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要