Single cell expression analysis uncouples transdifferentiation and reprogramming

bioRxiv(2018)

引用 0|浏览61
暂无评分
摘要
Many somatic cell types are plastic, having the capacity to convert into other specialized cells (transdifferentiation)(1) or into induced pluripotent stem cells (iPSCs, reprogramming)(2) in response to transcription factor over-expression. To explore what makes a cell plastic and whether these different cell conversion processes are coupled, we exposed bone marrow derived pre-B cells to two different transcription factor overexpression protocols that efficiently convert them either into macrophages or iPSCs and monitored the two processes over time using single cell gene expression analysis. We found that even in these highly efficient cell fate conversion systems, cells differ in both their speed and path of transdifferentiation and reprogramming. This heterogeneity originates in two starting pre-B cell subpopulations, large pre-BII and the small pre-BII cells they normally differentiate into. The large cells transdifferentiate slowly but exhibit a high efficiency of iPSC reprogramming. In contrast, the small cells transdifferentiate rapidly but are highly resistant to reprogramming. Moreover, the large B cells induce a stronger transient granulocyte/macrophage progenitor (GMP)-like state, while the small B cells undergo a more direct conversion to the macrophage fate. The large cells are cycling and exhibit high Myc activity whereas the small cells are Myc low and mostly quiescent. The observed heterogeneity of the two cell conversion processes can therefore be traced to two closely related cell types in the starting population that exhibit different types of plasticity. These data show that a somatic cell9s propensity for either transdifferentiation and reprogramming can be uncoupled.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要