谷歌浏览器插件
订阅小程序
在清言上使用

Locating Si Atoms in Si-doped Boron Carbide: A Route to Understand Amorphization Mitigation Mechanism

Acta materialia(2018)

引用 41|浏览23
暂无评分
摘要
The well-documented formation of amorphous bands in boron carbide (B4C) under contact loading has been identified in the literature as one of the possible mechanisms for its catastrophic failure. To mitigate amorphization, Si-doping was suggested by an earlier computational work, which was further substantiated by an experimental study. However, there have been discrepancies between theoretical and experimental studies, about Si replacing atom/s in B12 icosahedra or the C-B-C chain. Dense single phase Si-doped boron carbide was produced through a conventional scalable route. A powder mixture of SiB6, B4C, and amorphous boron was reactively sintered, yielding a dense single phase Si-doped boron carbide material. A combined analysis of Rietveld refinement on XRD pattern coupled with electron density difference Fourier maps and DFT simulations were performed in order to investigate the location of Si atoms in the boron carbide lattice. Si atoms occupy an interstitial position, between the icosahedra and the chain. These Si atoms are bonded to the chain end C atoms, which result in a kinked chain. Additionally, these Si atoms are also bonded to the neighboring equatorial B atom of the icosahedra, which is already bonded to the C atom of the chain, forming a bridge like structure. Owing to this bonding, Si is anticipated to stabilize the icosahedra through electron donation, which is expected to help in mitigating stress-induced amorphization. Possible supercell structures are suggested along with the most plausible structure for Si-doped boron carbide.
更多
查看译文
关键词
Crystal structure,Ceramics,Si-doped boron carbide,Density functional theory simulations,Scanning transmission electron microscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要