An adipocyte light-Opsin 3 pathway regulates the circadian clock and energy balance.

bioRxiv(2018)

引用 3|浏览35
暂无评分
摘要
Almost all life forms can detect and decode light information for adaptive advantage. Examples include the visual system, where photoreceptor signals are processed into virtual images, and the circadian system, where light entrains a physiological clock. Here we describe a pathway in mice that employs encephalopsin (OPN3, a 480 nm light responsive opsin) to mediate light responses in murine adipocytes. The adipocyte light-OPN3 pathway regulates neonatal growth in mice and is required for at least three important functions including (1) photoentrainment of a local circadian clock, (2) extracellular matrix deposition, and (3) regulation of mitochondrial content and the proportion of brite adipocytes. Furthermore, we show that the light-OPN3 pathway is required for normal levels of uncoupling protein 1 (UCP1) in white and brown adipose tissue. Consequently, neonatal Opn3 germ-line and adipocyte-conditional null mice show a reduced ability to maintain their body temperature under cold stress. This was also observed in wild-type mice deprived of blue light. We hypothesize that the adipocyte light-OPN3 pathway provides a dynamically responsive, circadian clock-integrated mechanism for regulating adipocyte function and in turn directing metabolism to thermogenesis rather than anabolism. These data indicate an important role for peripheral light sensing in mammals and may have broad implications for human health given the unnatural lighting conditions in which we live.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要