Provable compressed sensing quantum state tomography via non-convex methods

NPJ QUANTUM INFORMATION(2018)

引用 30|浏览131
暂无评分
摘要
With nowadays steadily growing quantum processors, it is required to develop new quantum tomography tools that are tailored for high-dimensional systems. In this work, we describe such a computational tool, based on recent ideas from non-convex optimization. The algorithm excels in the compressed sensing setting, where only a few data points are measured from a low-rank or highly-pure quantum state of a high-dimensional system. We show that the algorithm can practically be used in quantum tomography problems that are beyond the reach of convex solvers, and, moreover, is faster and more accurate than other state-of-the-art non-convex approaches. Crucially, we prove that, despite being a non-convex program, under mild conditions, the algorithm is guaranteed to converge to the global minimum of the quantum state tomography problem; thus, it constitutes a provable quantum state tomography protocol.
更多
查看译文
关键词
Computational science,Computer science,Physics,general,Quantum Physics,Quantum Information Technology,Spintronics,Quantum Computing,Quantum Field Theories,String Theory,Classical and Quantum Gravitation,Relativity Theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要