Efficient Charge Separation At Multiple Quantum Well Perovskite/Pcbm Interface

APPLIED PHYSICS LETTERS(2018)

引用 8|浏览19
暂无评分
摘要
Low-dimensional organometal halide perovskites have attracted more and more attention because of their good optoelectronic properties and improved stability compared to three-dimensional analogues. In this work, we investigated the charge separation mechanism in multiple quantum well (MQW) perovskite films, which are composed of a mixture of layered perovskites (or quantum wells) with different bandgaps. Despite inefficient dissociation of photo-generated excitons in large-bandgap quantum wells due to the large exciton binding energy, efficient charge separation can occur at the MQW perovskite/electron-extracted-layer interface via energy and/or charge transfer from large-bandgap quantum wells to small-bandgap quantum wells. The MQW perovskite solar cell exhibits a 25-fold improvement in device efficiency, as compared to a pure 2D analogue. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要