Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing

Nano Energy(2018)

引用 141|浏览22
暂无评分
摘要
Optically stimulated synaptic devices are critical to the development of neuromorphic computing with broad bandwidth and efficient interconnect. Although a few interesting materials have been employed to fabricate optically stimulated synaptic devices, the use of silicon (Si) that is the material of choice for very large-scale integration circuits in the conventional von Neumann computing has not been explored for optically stimulated synaptic devices. Here we take advantage of one of the most important nanostructures of Si — Si nanocrystals (NCs) to make synaptic devices, which can be effectively stimulated by light in the unprecedented broad spectral region from the ultraviolet to near-infrared, approaching the wavelength of ∼ 2 µm. These optically stimulated Si-NC-based synaptic devices demonstrate a series of important synaptic functionalities, well mimicking biological synapses. The plasticity of Si-NC-based synaptic devices originates from the dynamic trapping and release of photogenerated carriers at defects such as dangling bonds at the NC surface. The current facile use of Si NCs in broadband optoelectronic synaptic devices with low energy consumption has important implication for the large-scale deployment of Si in the emerging neuromorphic computing.
更多
查看译文
关键词
Silicon nanocrystals,Optoelectronic synaptic device,Broadband,Neuromorphic computing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要