Recoil-ion momentum spectroscopy of photoionization of cold rubidium atoms in a strong laser field.

arXiv: Quantum Physics(2018)

引用 23|浏览6
暂无评分
摘要
We study photoionization of cold rubidium atoms in a strong infrared laser field using a magneto-optical trap (MOT) recoil ion momentum spectrometer. Three types of cold rubidium target are provided, operating in two-dimension (2D) MOT, 2D molasses, and 3D MOT with densities in the orders of $10^7$ atoms/cm$^3$, $10^8$ atoms/cm$^3$, and $10^9$ atoms/cm$^3$, respectively. The density profile and the temperature of 3D MOT are characterized using the absorption imaging and photoionization. The momentum distributions of Rb$^+$ created by absorption of two- or three-photon illuminate a dipole-like double-peak structure, in good agreement with the results in the strong field approximation. The yielding momentum resolution of $0.12 pm 0.03$ a.u. is achieved in comparison with theoretical calculations, exhibiting the great prospects for the study of electron correlations in alkali metal atoms through interaction with strong laser pulses.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要