Surface Ligand Engineering for Near-Unity Quantum Yield Inorganic Halide Perovskite QDs and High-Performance QLEDs

CHEMISTRY OF MATERIALS(2018)

引用 213|浏览11
暂无评分
摘要
Despite the great potential of all-inorganic CsPbX3 (X = Br or I) quantum dots (QDs) for light-emitting diodes (QLEDs), their emission properties have been impeded by the long insulating ligands on the QD surface. To address the problem, an efficient surface ligand engineering method has been executed by using a short conjugation molecular ligand phenethylamine (PEA) as ligands to synthesize CsPbX3 QDs and then treating the CsPbX3 QD films with phenethylammonium bromide (PEABr) or phenethylammonium iodide (PEAL). The results indicate that the short conjugation molecular ligand is successfully adsorbed on the surface of CsPbX3 QDs to instead long insulating ligands, resulting in the remarkable enhancement of the carrier injection and transport. The incorporation of phenethylamine (PEA) as synthetic ligand causes the fewer trap states in both CsPbBr3 and CsPbI3 QDs, exhibiting the near-unity photoluminescence quantum yields (PLQYs) of 93% and 95%, respectively. The luminance of CsPbBr3 and CsPbI3 QLEDs could be improved to 21470 and 1444 cd m(-2), respectively, when the long insulating ligands were further replaced with conjugation molecular ligands. Particularly, the external quantum efficiency (EQE) of CsPbI3 QLEDs reaches 14.08%, which is among the highest efficiency of red perovskite LEDs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要