Three-body Interactions Drive the Transition to Polar Order in a Simple Flocking Model.

PHYSICAL REVIEW E(2019)

引用 6|浏览8
暂无评分
摘要
A large class of mesoscopic or macroscopic flocking theories are coarse-grained from microscopic models that feature binary interactions as the chief aligning mechanism. However, while such theories seemingly predict the existence of polar order with just binary interactions, actomyosin motility assay experiments show that binary interactions are insufficient to obtain polar order, especially at high densities. To resolve this paradox, here we introduce a solvable one-dimensional flocking model and derive its stochastic hydrodynamics. We show that two-body interactions are insufficient to generate polar order unless the noise is non-Gaussian. We show that noisy three-body interactions in the microscopic theory allow us to capture all essential dynamical features of the flocking transition, in systems that achieve orientational order above a critical density.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要