谷歌浏览器插件
订阅小程序
在清言上使用

Nanosuspension of quercetin: preparation, characterization and effects against Aedes aegypti larvae

Revista Brasileira de Farmacognosia(2018)

引用 26|浏览7
暂无评分
摘要
Aedes aegypti (Diptera: Culicidae) is the main vector of some neglected diseases, including dengue. It is very important to develop formulations that increase effectiveness of vector control with low toxicity. Quercetin is a plant-derived flavonoid that modulates the development of some insects. The low water solubility of quercetin impairs the development of water-dispersible commercial products. To circumvent this problem, the preparation of nanoformulations is considered promising. Thus, this study aimed to evaluate the effect of bulk and quercetin nanosuspension against A. aegypti larvae and also to investigate their ecotoxicity. Quercetin nanosuspension was produced by a solvent displacement method followed by solvent evaporation and was maintained in two different temperatures (4 and 25 °C). Its size distribution and zeta potential were monitored along 30 days. The influence of quercetin nanosuspension and bulk-quercetin was investigated at various concentrations against A. aegypti and the green algae Chlorella vulgaris . The quercetin nanosuspension presented higher stability at 4 °C and negative zeta potential values. Quercetin nanosuspension and bulk-quercetin adversely affected the larvae development, especially at the highest concentrations. Larvae mortality was between 44% and 100% (48 h) for quercetin nanosuspension at 100 and 500 ppm, respectively. The bulk-quercetin induced around 50% mortality regardless the concentration used at this same time-period. Absence of emerging mosquitoes from water was observed on the survival larvae of all the treated groups. Quercetin nanosuspension was less toxic than bulk-quercetin against C. vulgaris , especially at higher concentrations. These data indicate that quercetin nanosuspension may represent a potential larvicide for A. aegypti control, once they induced larvae death and inhibited the survival ones to emerge from water. In addition, it did not demonstrated ecotoxicity against a non-target organism, highlighting its better properties, when compared to the bulk-quercetin.
更多
查看译文
关键词
Culicidae,Ecotoxicity,Larvicide,Nanocarrier,Flavonoid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要