Chromatin-dependent cryptic promoters encode alternative protein isoforms in yeast.

bioRxiv(2019)

引用 0|浏览15
暂无评分
摘要
Cryptic transcription is widespread and generates a heterogeneous group of RNA molecules of unknown function. To improve our understanding of cryptic transcription, we investigated their transcription start site usage, chromatin organization and post-transcriptional consequences in Saccharomyces cerevisiae. We show that transcription start sites (TSSs) of chromatin-sensitive internal cryptic transcripts retain comparable features of canonical TSSs in terms of DNA sequence, directionality and chromatin accessibility. We define the 5′ and 3′ boundaries of cryptic transcripts and show that, contrary to RNA degradation-sensitive ones, they often overlap with the end of the gene thereby using the canonical polyadenylation site and associate to polyribosomes. In fact, we show that chromatin-sensitive cryptic transcripts can be recognized by ribosomes and may produce truncated polypeptides from downstream, in-frame start codons. Our work suggests that a fraction of chromatin-sensitive internal cryptic promoters are in fact alternative truncated mRNA isoforms. The expression of these chromatin-sensitive isoforms is conserved from yeast to human expanding the functional consequences of cryptic transcription and proteome complexity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要