Life Cycle Assessment of a Buoy-Rope-Drum Wave Energy Converter

ENERGIES(2018)

引用 18|浏览2
暂无评分
摘要
This study presents a life cycle assessment (LCA) study for a buoy-rope-drum (BRD) wave energy converter (WEC), so as to understand the environmental performance of the BRD WEC by eco-labeling its life cycle stages and processes. The BRD WEC was developed by a research group at Shandong University (Weihai). The WEC consists of three main functional modules including buoy, generator and mooring modules. The designed rated power capacity is 10 kW. The LCA modeling is based on data collected from actual design, prototype manufacturing, installation and onsite sea test. Life cycle inventory (LCI) analysis and life cycle impact analysis (LCIA) were conducted. The analyses show that the most significant environmental impact contributor is identified to be the manufacturing stage of the BRD WEC due to consumption of energy and materials. Potential improvement approaches are proposed in the discussion. The LCI and LCIA assessment results are then benchmarked with results from reported LCA studies of other WECs, tidal energy converters, as well as offshore wind and solar PV systems. This study presents the energy and carbon intensities and paybacks with 387 kJ/kWh, 89 gCO(2)/kWh, 26 months and 23 months respectively. The results show that the energy and carbon intensities of the BRD WEC are slightly larger than, however comparable, in comparison with the referenced WECs, tidal, offshore wind and solar PV systems. A sensitivity analysis was carried out by varying the capacity factor from 20-50%. The energy and carbon intensities could reach as much as 968 kJ/kWh and 222 gCO(2)/kWh respectively while the capacity factor decreasing to 20%. Limitations for this study and scope of future work are discussed in the conclusion.
更多
查看译文
关键词
wave energy converter,life cycle assessment,energy intensity,carbon intensity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要