Capacity lower bound for the Ising perceptron

Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing(2019)

引用 52|浏览16
暂无评分
摘要
We consider the Ising perceptron with gaussian disorder, which is equivalent to the discrete cube {−1,+1}N intersected by M random half-spaces. The perceptron’s capacity is the largest integer MN for which the intersection is nonempty. It is conjectured by Krauth and Mézard (1989) that the (random) ratio MN/N converges in probability to an explicit constant α⋆≐ 0.83. Kim and Roche (1998) proved the existence of a positive constant γ such that γ ≤ MN/N ≤ 1−γ with high probability; see also Talagrand (1999). In this paper we show that the Krauth–Mézard conjecture α⋆ is a lower bound with positive probability, under the condition that an explicit univariate function S(λ) is maximized at λ=0. Our proof is an application of the second moment method to a certain slice of perceptron configurations, as selected by the so-called TAP (Thouless, Anderson, and Palmer, 1977) or AMP (approximate message passing) iteration, whose scaling limit has been characterized by Bayati and Montanari (2011) and Bolthausen (2012). For verifying the condition on S(λ) we outline one approach, which is implemented in the current version using (nonrigorous) numerical integration packages. In a future version of this paper we intend to complete the verification by implementing a rigorous numerical method.
更多
查看译文
关键词
Ising perceptron, approximate message passing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要