A Simulation-Based Evaluation of Total-Evidence Dating Under the Fossilized Birth-Death Process

bioRxiv(2018)

引用 3|浏览19
暂无评分
摘要
Bayesian molecular dating is widely used to study evolutionary timescales. This procedure usually involves phylogenetic analysis of nucleotide sequence data, with fossil-based calibrations applied as age constraints on internal nodes of the tree. An alternative approach is Bayesian total-evidence dating, which involves the joint analysis of molecular data from present-day taxa and morphological data from both extant and fossil taxa. Part of its appeal stems from the fossilized birth-death process, which provides a model of lineage diversification for the prior on the tree topology and node times. However, total-evidence dating faces a number of considerable challenges, especially those associated with fossil sampling and evolutionary models for morphological characters. We conducted a simulation study to evaluate the performance of total-evidence dating with the fossilized birth-death model. We simulated fossil occurrences and the evolution of nucleotide sequences and morphological characters under a wide range of conditions. Our analyses show that fossil occurrences have a greater influence than the degree of among-lineage rate variation or the number of morphological characters on estimates of node times and the tree topology. Total-evidence dating generally performs well in recovering the relationships among extant taxa, but has difficulties in correctly placing fossil taxa in the tree and identifying the number of sampled ancestors. The method yields accurate estimates of the origin time of the fossilized birth-death process and the ages of the root and crown group, although the precision of these estimates varies with the probability of fossil occurrence. The exclusion of morphological characters results in a slight overestimation of node times, whereas the exclusion of nucleotide sequences has a negative impact on inference of the tree topology. Overall, our results provide a detailed view of the performance of total-evidence dating, which will inform further development of the method and its application to key questions in evolutionary biology.
更多
查看译文
关键词
molecular clock,total-evidence dating,fossilized birth-death process,fossil calibration,Bayesian phylogenetics,evolutionary simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要