谷歌浏览器插件
订阅小程序
在清言上使用

An optical transmission spectrum for the ultra-hot Jupiter WASP-121b measured with the Hubble Space Telescope

ASTRONOMICAL JOURNAL(2018)

引用 121|浏览78
暂无评分
摘要
We present an atmospheric transmission spectrum for the ultra-hot Jupiter WASP-121b, measured using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. Across the 0.47-1 mu m wavelength range, the data imply an atmospheric opacity comparable to-and in some spectroscopic channels exceeding-that previously measured at near-infrared wavelengths (1.15-1.65 mu m). Wavelength-dependent variations in the opacity rule out a gray cloud deck at a confidence level of 3.7 sigma and may instead be explained by VO spectral bands. We find a cloud-free model assuming chemical equilibrium for a temperature of 1500 K and a metal enrichment of 10-30x solar matches these data well. Using a free-chemistry retrieval analysis, we estimate a VO abundance of -6.6(-0.3)(+0.2) dex. We find no evidence for TiO and place a 3 sigma upper limit of -7.9 dex on its abundance, suggesting TiO may have condensed from the gas phase at the day-night limb. The opacity rises steeply at the shortest wavelengths, increasing by approximately five pressure scale heights from 0.47 to 0.3 mu m in wavelength. If this feature is caused by Rayleigh scattering due to uniformly distributed aerosols, it would imply an unphysically high temperature of 6810 +/- 1530 K. One alternative explanation for the short-wavelength rise is absorption due to SH (mercapto radical), which has been predicted as an important product of non-equilibrium chemistry in hot Jupiter atmospheres. Irrespective of the identity of the NUV absorber, it likely captures a significant amount of incident stellar radiation at low pressures, thus playing a significant role in the overall energy budget, thermal structure, and circulation of the atmosphere.
更多
查看译文
关键词
methods: observational,planets and satellites: atmospheres,planets and satellites: gaseous planets
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要