Harnessing Intramolecular Rotation to Enhance Two-photon Imaging of Aβ Plaques Through Minimizing Background Fluorescence.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION(2019)

引用 71|浏览19
暂无评分
摘要
The aggregation of amyloid beta (A beta) proteins in senile plaques is a critical event during the development of Alzheimer's disease, and the postmortem detection of A beta-rich proteinaceous deposits through fluorescent staining remains one of the most robust diagnostic tools. In animal models, fluorescence imaging can be employed to follow the progression of the disease, and among the different imaging methods, two-photon microscopy (TPM) has emerged as one of the most powerful. To date, several near-infrared-emissive two-photon dyes with a high affinity for A beta fibrils have been developed, but there has often been a tradeoff between excellent two-photon cross-sections and large fluorescence signal-to-background ratios. In the current work, we introduced a twisted intramolecular charge state (TICT)-based de-excitation pathway, which results in a remarkable fluorescence increase of around 167-fold in the presence of A beta fibrils, while maintaining an excellent two-photon cross section, thereby enabling high-contrast ex vivo and in vivo TPM imaging. Overall, the results suggest that adopting TICT de-excitation in two-photon fluorophores may represent a general method to overcome the tradeoff between probe brightness and signal-to-background ratio.
更多
查看译文
关键词
Alzheimer's disease,fluorescent probes,imaging agents,molecular rotation,two-photon probes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要