Modeling of Transition Metal Color Centers in Diamond

Nicholas W. Gothard, Douglas S. Dudis,Luke J. Bissell

MRS Advances(2016)

引用 1|浏览3
暂无评分
摘要
Diamond stands out among single-photon sources due to an intrinsically large band gap, photo-stable emission, room-temperature operation, short excited state lifetimes, and the ability to host hundreds of different color centers. Currently, most of these centers are active in the optical spectrum, but a single-photon source in the infrared would represent a significant advancement. In pursuit of this end, a number of different transition metal atoms have been studied as dopants in the diamond lattice via the GAMESS (General Atomic Molecular and Electronic Structure System) cluster calculation package. The importance of cluster size and electron correlation effects is considered, and excitation energies have been calculated via time-dependent density functional theory.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要