Finite Element Simulation of the Cutting Process for Inconel 718 Alloy Using a New Material Constitutive Model

Key Engineering Materials(2016)

引用 0|浏览4
暂无评分
摘要
Inconel 718 alloy is a typical difficult-to-cut material and widely used in the aerospace industry. Finite element simulation is an efficient method to investigate the cutting process, whereby a work material constitutive model plays an important role. In this paper, finite element simulation of the cutting process for Inconel 718 alloy using a new material constitutive model for high strain rates is presented. The effect of tool cutting edge radius on the cutting forces and temperature is then investigated with a view to facilitate cutting tool design. It is found that as the cutting edge radius increases, the characteristics of tool-work friction and the material removal mechanisms change, resulting in variation in cutting forces and temperature. It is shown that a smaller cutting edge radius is preferred to reduce the cutting forces and cutting temperature.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要