Parallel Coordinate Descent Newton Method for Efficient $L_1$-Regularized Loss Minimization.

IEEE Transactions on Neural Networks and Learning Systems(2019)

引用 6|浏览2
暂无评分
摘要
The recent years have witnessed advances in parallel algorithms for large-scale optimization problems. Notwithstanding the demonstrated success, existing algorithms that parallelize over features are usually limited by divergence issues under high parallelism or require data preprocessing to alleviate these problems. In this paper, we propose a Parallel Coordinate Descent algorithm using approximate Newton steps (PCDN) that is guaranteed to converge globally without data preprocessing. The key component of the PCDN algorithm is the high-dimensional line search, which guarantees the global convergence with high parallelism. The PCDN algorithm randomly partitions the feature set into b subsets/bundles of size P, and sequentially processes each bundle by first computing the descent directions for each feature in parallel and then conducting P-dimensional line search to compute the step size. We show that: 1) the PCDN algorithm is guaranteed to converge globally despite increasing parallelism and 2) the PCDN algorithm converges to the specified accuracy ε within the limited iteration number of Tε, and Tε decreases with increasing parallelism. In addition, the data transfer and synchronization cost of the P-dimensional line search can be minimized by maintaining intermediate quantities. For concreteness, the proposed PCDN algorithm is applied to L₁-regularized logistic regression and L₁-regularized L₂-loss support vector machine problems. Experimental evaluations on seven benchmark data sets show that the PCDN algorithm exploits parallelism well and outperforms the state-of-the-art methods.
更多
查看译文
关键词
Parallel processing,Logistics,Convergence,Minimization,Approximation algorithms,Partitioning algorithms,Support vector machines
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要