Robust And Communication-Efficient Federated Learning From Non-I.I.D. Data

CoRR(2020)

引用 1299|浏览15
暂无评分
摘要
Federated learning allows multiple parties to jointly train a deep learning model on their combined data, without any of the participants having to reveal their local data to a centralized server. This form of privacy-preserving collaborative learning, however, comes at the cost of a significant communication overhead during training. To address this problem, several compression methods have been proposed in the distributed training literature that can reduce the amount of required communication by up to three orders of magnitude. These existing methods, however, are only of limited utility in the federated learning setting, as they either only compress the upstream communication from the clients to the server (leaving the downstream communication uncompressed) or only perform well under idealized conditions, such as i.i.d. distribution of the client data, which typically cannot be found in federated learning. In this article, we propose sparse ternary compression (STC), a new compression framework that is specifically designed to meet the requirements of the federated learning environment. STC extends the existing compression technique of top-k gradient sparsification with a novel mechanism to enable downstream compression as well as ternarization and optimal Golomb encoding of the weight updates. Our experiments on four different learning tasks demonstrate that STC distinctively outperforms federated averaging in common federated learning scenarios. These results advocate for a paradigm shift in federated optimization toward high-frequency low-bitwidth communication, in particular in the bandwidth-constrained learning environments.
更多
查看译文
关键词
Training,Data models,Servers,Deep learning,Protocols,Training data,Distributed databases,Deep learning,distributed learning,efficient communication,federated learning,privacy-preserving machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要