Near-Infrared-Fluorescent Probes for Bioapplications Based on Silica-Coated Gold Nanobipyramids with Distance-Dependent Plasmon-Enhanced Fluorescence

ANALYTICAL CHEMISTRY(2016)

引用 65|浏览8
暂无评分
摘要
Optical antennas with anisotropic metal nano structures are widely used in the field of fluorescence enhancement based on localized surface plasmons (LSPs). They overcome the intrinsic defects of low brightness of near infrared (NIR) dyes and can be used to develop sensitive NIR sensors for bioapplications. Here, we demonstrate a novel NIR plasmon-enhanced fluorescence (PEF) system consisting of elongated gold nanobipyramids (Au NBPs) antennas, silica, and NIR dyes. Silica was chosen as the rigid spacer to regulate the distance between the metal nanostructures and dyes. Maximum enhancement was observed at a distance of approximately 17 nm. The enhanced fluorescence could be quenched by Cu2+ and recovered by pyrophosphate (PPi) owing to the strong affinity between PPi and Cu2+. Thus, the Au NBP@SiO2@Cy7 nanoparticles (NPs) detect PPi via "switch-on" fluorescence signals, with a detection limit of 80 nM in the aqueous phase. The probe not only detects PPi in living cells but also can be used for a microRNA assay with a detection limit of 8.4 pM by detecting PPi in rolling circle amplification (RCA). Additionally, gold nanorods (Au NRs) with the same longitudinal plasmon resonance wavelength (LPRW) as the Au NBPs were prepared to synthesize Au NR@SiO2@Cy7 NPs for comparison. The experimental and finite-different time-domain (FDTD) simulation results indicate that the stronger electric fields of Au NBPs contribute to a fluorescence enhancement that is several times higher than that of Au NRs, confirming the superior properties of Au NBPs as novel ideal substrates to develop PEF biosensors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要