Control of Primary Particle Spacing in Gold Nanoparticle Clusters for Both High NIR Extinction and Full Reversibility

LANGMUIR(2017)

引用 5|浏览8
暂无评分
摘要
Reversible NIR-active nanoparticle clusters with controlled size from 20 to 100 nm were assembled from 5 nm gold nanoparticles (Au NP), with either citrate (CIT) or various binary ligands on the surface, by tuning the electrostatic repulsion and the hydrogen bonding via pH. The nanoclusters were bound together by vdW forces between the cores and the hydrogen bonds between the surface ligands and dissociated to primary nanoparticles over a period of 20 days at pH 5 and at pH 7. When high levels of citrate ligands were used on the primary particle surfaces, the large particle spacings in the nanoclusters led to only modest NIR extinction. However, a NIR extinction (E-1000/525) ratio of up to similar to 0.4 was obtained for nanoclusters with binary ligand mixtures composed of citrate and either cysteine (CYS), glutathione (GSH), or thioctic acid zwitterion (TAZ) while maintaining full reversibility to primary particles. The optimum ligand ratio for both an E-1000/525 of similar to 0.4 and full reversibility decreased with increasing length of the secondary ligand (1.5/1 for CYS/CIT, 0.75/1 for GSH/CIT, and 0.5/1 for TAZ/CIT) because a longer secondary ligand maintains a sufficient interparticle spacing required for dissociation more effectively. Interestingly, the zeta potential and the first-order rate constant for nanocluster dissociation were similar for all three systems at the optimum ligand ratios. After incubation in 10 mM GSH solution (intracellular concentration), only the TAZ/CIT primary nanoparticles were resistant to protein opsonization in 100% fetal bovine serum, as the bidentate binding and zwitterion tips of TAZ resisted GSH exchange and protein opsonization, respectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要